PAPER

To cite this article: Lin Tao et al 2019 Mater. Res. Express 6 025035

View the <u>article online</u> for updates and enhancements.

Materials Research Express

PAPER

Evolution of calcite surface reconstruction and interface adsorption of calcite-CO₂ with temperature

Lin Tao^{1,2}, Zhi Li^{1,2}, Guo-Cheng Wang^{1,2}, Bao-Yu Cui³, Xi-Tao Yin^{1,2,4} and Qi Wang^{1,2,4} 1 K L C M L E L. , L, ,A, ,L, ,114051, . . . C E ,N ., . Ç E-mail: yxtaj@163.com and wangqi8822@sina.com

Abstract

(MD) . (104) CO_2 . I fl . 673 K. M CO_2 C CO_2

1. Introduction

C fl [7,8], $(EO)[9], CO_2$ [10-12][16–18]. E [14, 19]. CO_2 [13]. C fi , , , fl . Н (G-D C)[20,21], [22]. I , MD (DF) [24, 25]. CO₂ , , , , , MD . . . $\operatorname{etal}[26]$. . . CO_2 MD et al [26]. et al [27]

 CO_2 $(1\overline{1}0)$, fi MD . CO_2 $CO_$

2. Computational details

(GGA)[33] (= 0.5048 + 0.5048) (= 0.5048 + 0.5048) (= 0.5048 + 0.5048) (= 0.5053 + 0.5048) $(L_{(CO2)} = 0.1175)$ \times 2.5148 \times 0.7769 .F ... , , , ... (104) [26, 28, 39]. CO₂ 350 CO₂ (104) fi CO_2 0.45 CO_2

	Е. (×)							
	2 × 2	3 × 3	4×4	5 × 5	6 × 6	7 × 7	8 × 8	9 × 9	
E	-1.464 ± 0.012	-1.447 ± 0.017	-1.451 ± 0.010	-1.445 ± 0.009	-1.445 ± 0.013	-1.447 ± 0.011	-1.445 ± 0.015	-1.446 ± 0.010	

3. Results and discussion

3.1. Pure surface reconstruction

 \mathbf{F} . . $\mathbf{4}$. . . \mathbf{fi} . . . O ,C , , A , MD , ,, [18, 44]. H00'. O-C-O. O. 7 F , $\angle CO_3^{2-}$. F . , $\Delta_{surface}$ (104) . 100 fi (298 K), R_C^B . N fi , et al [16]. •

Table 2. E

	, (°)				O-C-O. (°)		D ()		(°)	D ()
(K)	R_C^B	R_C^Y	$R_{OO'}^{B}$	$R_{OO'}^{Y}$	\angle_{O-C-O}^{B}	\angle_{O-C-O}^{Y}	$\overline{D_{Ca-O}^B}$	D_{Ca-O}^{Y}	$\angle CO_3^{2-}$	$\Delta_{ m surface}$
298	18.5	19.4	14.2	14.7	122.7	122.8	0.194	0.194	39.4	0.0669
373	19.3	19.1	15.1	14.3	123.0	122.9	0.194	0.195	39.3	0.0727
473	20.0	20.8	15.3	15.4	123.0	122.9	0.196	0.196	39.0	0.0721
573	22.6	21.1	16.6	16.1	123.3	123.0	0.197	0.196	38.9	0.0736
673	24.2	24.0	18.1	18.3	123.5	123.5	0.198	0.198	38.4	0.0715
773	24.3	24.7	18.6	18.7	123.6	123.5	0.198	0.198	38.3	0.0748
873	24.7	24.5	18.5	18.4	123.5	123.6	0.198	0.199	38.4	0.0771

OO' fix 5.I... $R_{OO'}^B$. B , , , , O-C-O [1, 17]. [45]. ., (104) fl ... G , et al [46] M . . (1 04) . . [47, 48], J. -. [1]. $(D_{Ca-O} \quad 0.231 \quad [49]),$ C . O. . C CO₃ [22].

Figure 6. CO₂ CO₂ () 473 K,() 573 K,() 673 K,() 773 K, () 873 K.

Table 3. E CO_2 .

	, (°)			O-C-O. (°)		D ()		(°)	D ()	
(K)	R_C^B	R_C^Y	$R_{OO'}^{B}$	$R_{OO'}^{Y}$	\angle_{O-C-O}^{B}	\angle_{O-C-O}^{Y}	$\overline{D^B_{Ca-O}}$	D_{Ca-O}^{Y}	$\angle CO_3^{2-}$	$\Delta_{ m surface}$
298	18.5	19.4	14.4	14.7	122.6	122.7	0.193	0.194	39.6	0.0670
373	19.4	19.2	15.1	14.3	123.0	122.9	0.194	0.196	38.7	0.0722
473	20.1	20.9	15.4	15.4	123.1	123.0	0.196	0.196	39.0	0.0734
573	22.6	21.4	16.6	16.1	123.3	123.0	0.197	0.197	38.9	0.0740
673	24.1	23.8	18.0	17.9	123.5	123.4	0.198	0.197	38.1	0.0720
773	24.3	24.4	18.2	18.1	123.6	123.5	0.198	0.198	37.8	0.0748
873	24.5	24.6	18.3	18.4	123.5	123.6	0.197	0.198	37.9	0.0769

3.2. CO₂ adsorption behavior

fix 6()-().B CO_2 CO_2 CO_3 CO_4 CO_4 CO_5 CO_2 CO₂ (E_{Ads})

CO₂

		(K)							
	298	373	473	573	673	773	873		
$E_{Pure} \ E_{Ads}$	$-109\ 451\ \pm\ 75$ $-109\ 442\ \pm\ 72$	$-109\ 411\ \pm\ 81$ $-109\ 424\ \pm\ 77$	$-109\ 313\ \pm\ 84$ $-109\ 309\ \pm\ 80$	$-109\ 237\ \pm\ 78$ $-109\ 228\ \pm\ 79$	$-109\ 199 \pm 85$ $-109\ 203 \pm 88$	$-109\ 101\ \pm\ 92$ $-109\ 086\ \pm\ 97$	$-109\ 005 \pm 95$ $-108\ 997 \pm 94$		

CO₂ fl A fi 6, CO₂ C. A ., CO $E_{Gas}-E_{Tot}$ E_{Tot} , E_{Sut} CO_2 A fi. CO_2 (873 K fi . on <u>^</u>- CO_2 .CO₂ Ι. CO_2

Acknowledgments

ORCID iDs

References

[1] G , L C, , H 2017 A
Surfaces A: Physicochemical and Engineering Aspects 520 53–61 [2] K , C H JH 2003 A The Journal of
Physical Chemistry B 107 7676–82
[3] F , J F 2016 B
[4] L NH C1998 , , , ; : The Journal of Physical Chemistry B 102 2914–22
[5] L . N 1997 A
Journal of the Chemical Society, Faraday Transactions 93 467–75
[6] B N, M, J M L 2015 I
Langmuir 18 932–40
[8] K , A, KH,B H K2015 F
J. Colloid Interface Sci. 445 40–7
[9] A M E 2010 E
[10] A J C 2002 , find CO_2 , CO/C CO_3 Chem. Eng. J. 90
303–6
[11] A . J C. A . D 2003 C
Technology 86 1707–43
[13] B D , A _{\(\bar{\psi}\)} K MG 2004 M ,
[14] -N. C, -A. E,L. A, -N. AB. OH. M2009
C O
[15] D 1964 A Trans. Faraday Soc. 60 1902–13
[15] D 1964 A Trans. Faraday Soc. 60 1902–13 [16] A L K G J D 2003 E (2×1) (1014) Am. Mineral. 88 921–5
[17] G N C 2009 A J. Mater. Chem. 19 7807–21
[18] F , Geochim. Cosmochim. Acta 97 58–69
[19] H . E CIB
[20] J G K 2002 K G/D C : I: Thermochimica Acta 388 115–28
[21] J. G., 2005 K. G/D C. Journal of Thermal Analysis and
Calorimetry 82 659–64
[22] M A BL2013 N Science 341 855-6 [23] H LM, B IC, AF B2013 M CO ₂ - CO ₃ Reviews in
[23] H LM, B I C ₁ AF B 2013 M CO ₂ - CO ₃ Reviews in Mineralogy and Geochemistry 77 189–228
[24] D JA 2009 Density Functional Theory: A Practical Introduction (H , NJ: J , & ,I) 28–30
[25] C, K , M A, G $\sqrt{-}$ $G_{\overline{V}}^{-}$ 2003 M :
Faraday Discuss. 124 155–70
[26] H, H, N, , K, K, L 2016 M CH ₄ CO ₂ CH ₄ CO ₂ RSCAdvances 6 104456–62
[27] . M ,F. LFM,C . M E . IG2018M
Energy & Fuels 32 1934-41 [28] , G, M, G L, J G L G 2016 M H ₂ O,
CO ₂ , CH ₄ N ₂ (110) Appl. Surf. Sci. 385 616–21 [29] D B 1990 A - J. Chem. Phys. 92
508–17
[30] D B 2000 F DM ³ J. Chem. Phys. 113 7756–64
[31] M, L J, MA, C, H J, C M 2002 F - : ,
[32] C. J, MD, CJ,H J, MI, K. MC2005 F CA E, KC Materials 220 567–70
[33] J , B K E M 1996 G Phys. Rev. Lett. 77 3865
[34] J, B K, 1996 G. Phys. Rev. B 54 16533
Phys. Rev. B 54 16533

[35]	B MG2011F - MCO ₃
	C CO ₃ Physica B: Condensed Matter 406 1004–12
[36]	G -G G I J 2001 A C CO ₂ F I The Chemical Educator 6
	362–4
[37]	H, H, 2017 E Appl. Surf. Sci. 407 8–15
[38]	H1998 COM A: ab initio -fi
	The Journal of Physical Chemistry B 102 7338–64
[39]	B N, M, J M L 2015 I Physical Chemistry Chemical Physics:
	PCCP 17 3490-6
[40]	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	L , L . H , , M . , , . M 2014 A
	fi Journal of Theoretical and Computational Chemistry 13 1450028
[42]	D L N. 2000 A Mol. Simul. 2471–86
	N 1984 A
[44]	H F, , ,L , ,L , ,D MA B , D2011
	J. Colloid Interface Sci. 354 843–57
	A. M. H. 12010
	in situ The Canadian Mineralogist 48 1225–36
	G , ,F , ,D M E, , ~ G, L , N2004 , -
	D DM H JH 2004 Langmuir 20
	7630–6
	L. , L. A, B. D. E , M 1996
	172–82
	H F, B G H2017
	(1014) The Journal of Physical Chemistry C 121 20217–28
	L., G 2018 J. Cryst. Growth 492 13–7
[51]	$\sum_{k} D_{k} $, $k \in \mathbb{R}$
	Journal of Theoretical and Computational Chemistry 12 1350049
	D., , K M, A ² K, A K ² B 2000 N
	Thermochimica Acta 363 129–35