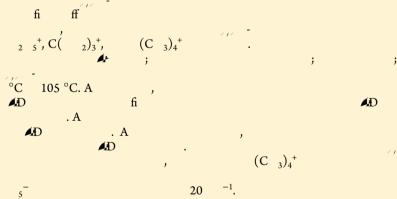
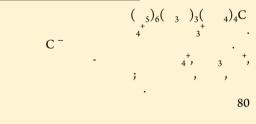
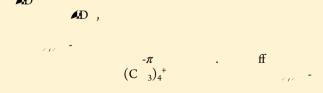
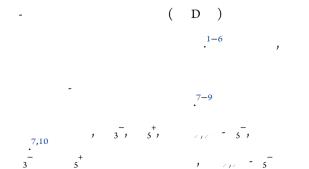


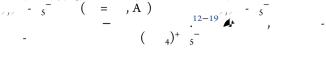
Synthesis and Characterization of *cyclo*-Pentazolate Salts of NH_4^+ , NH_3OH^+ , $N_2H_5^+$, $C(NH_2)_3^+$, and $N(CH_3)_4^+$


Chen Yang,^{†,⊥} Chong Zhang,^{†,⊥} Zhansheng Zheng,[†] Chao Jiang,[†] Jun Luo,[†] Yang Du,[†] Bingcheng Hu,^{*,†} Chengguo Sun,^{*,†,‡} and Karl O. Christe^{†,§}



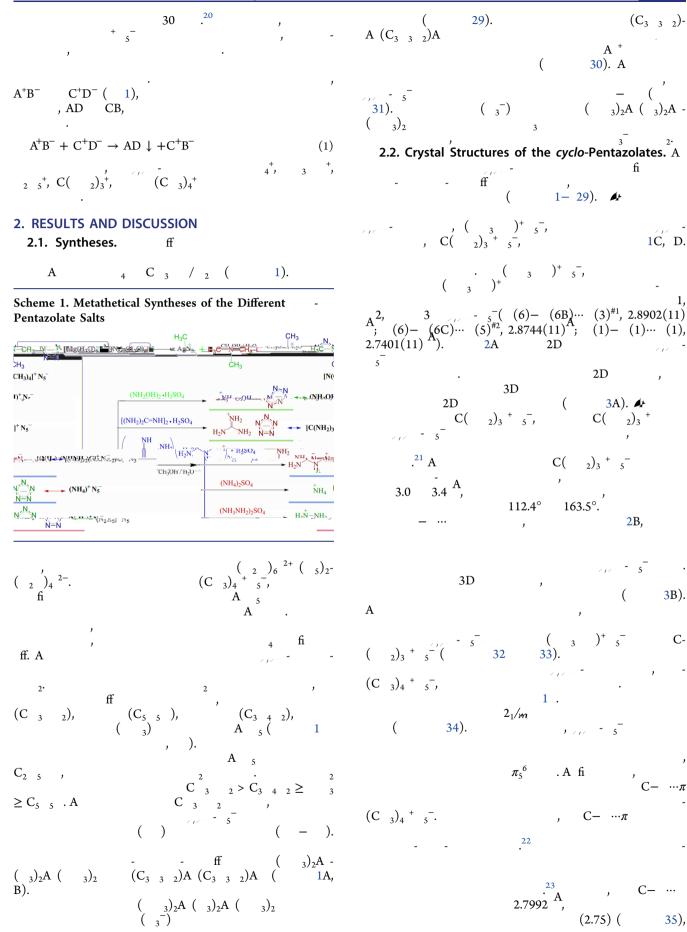

Supporting Information





$$(_{5})_{6}(_{3})_{3}(_{4})_{4}C.^{11}$$
,

$$\begin{pmatrix} 2 \\ 2 \\ 5 \end{bmatrix} \begin{pmatrix} 4 \\ 5 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \end{pmatrix} \begin{pmatrix} 4 \\ 2 \\ 4 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix} \begin{pmatrix} 2 \\ 2$$


Received:	15, 2018
olished:	5, 2018

(

1,

C-

DOI: 10.1021/jacs.8b05106 J. Am. Chem. Soc. 2018, 140, 16488–16494

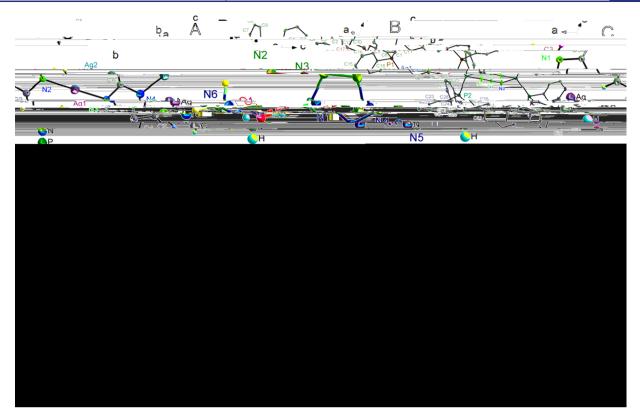
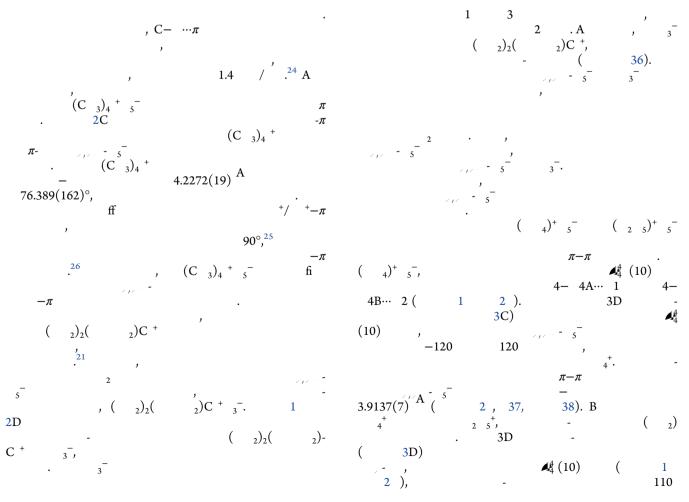
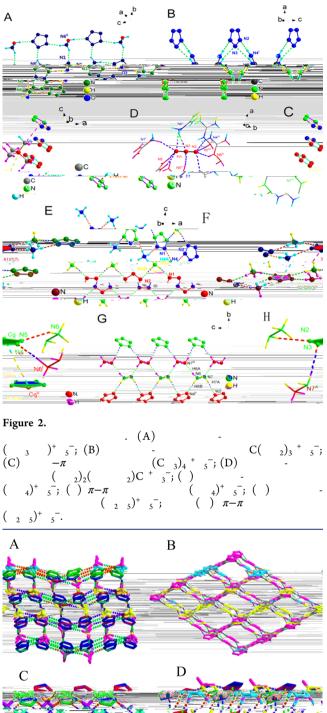
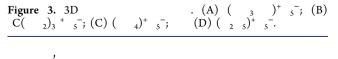
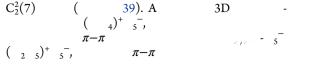
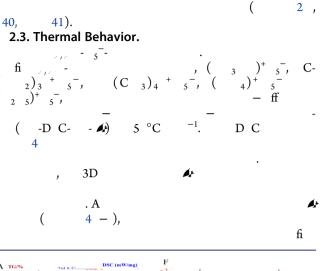
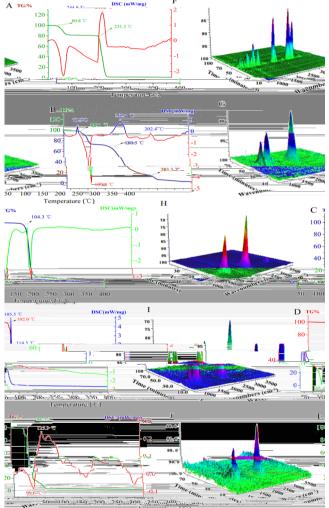




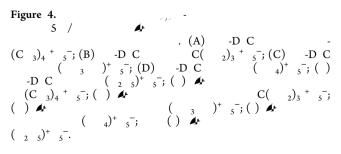

 Figure 1.
 . (A) ($_{3})_2A$ ($_{3})_2A$ ($_{3})_2i$ (B) (C₃ $_{3}$ $_{2})A$ (C₃ $_{3}$ $_{2})A$; (C) ($_{3}$)⁺ $_{5}$; (D)


 C($_{2})_3$ + $_{5}$; () (C $_{3})_4$ + $_{5}$; () ($_{2})_2($ $_{2})C$ + $_{3}$; () ($_{4})$ + $_{5}$; () ($_{2}$ $_{5})$ + $_{5}$.




DOI: 10.1021/jacs.8b05106 J. Am. Chem. Soc. 2018, 140, 16488–16494

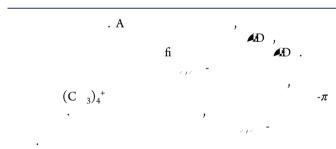




DOI: 10.1021/jacs.8b05106 J. Am. Chem. Soc. 2018, 140, 16488–16494

16491

, . , 2 C 7.0 , , ,


Journal of the American Chemical Society

	· - 5	D _{5.}	, -1 ()						, -1 ()						
			B3 / -	D	CC D()	/	D	3	+ C(₂) ₃ ⁺	$(C_{3})_{4}^{+}$	-	2 5+		4 ⁺
A_1 ' ν	1 (A A)		1189.7	38.6	1141	47.8		1187	117	6	1153	1170			1176
$_{1}^{'} \nu_{2}$	2 (📣		1243.7 ((17.5)	1202	2 (13.6)		1222	122	1	1202	1218			1221
$_{2}^{2} \nu_{3}$	3 (A A)		1106.5	0.3	1078	3 1.8		1120	111	2		1137	' 1105	6	1108
$ u_4$ ((A)		1016.6	2.4	1001	1.5		1005	101	0	1006				1020
2 ^{''} 1	v ₅ ()		769.5		739										
A 2	,	=	,	= ,	=	, =	,	=							. B
				C ₃					;'	D		-	,		
;	В			976	-1		$2 5^+$								

Table 1. Calculated and Observed Vibrational Spectra of _____-N5^ in Space Group _5

Table 2. Physical Properties of Five-Pentazolate Compounds and Three Azide Compounds and Their Comparison withRDX and HMX

	. 1 .	15		· · · ·	ΔH	D				
	(-3)	()	(°C)	(%)	$(^{-1})$	(-1)	()	()	• ()	· ()
$(C_{3})_{4} + 5^{-}$	1.245		80.8	58.29	297.2	5.88	10.08	197.7	35	>360
$C(_{2})_{3} + _{5}$	1.515	-5.40	88.1	86.12	312.3	7.96	20.14	201.5	24	>360
$(_{3})^{+} _{5}^{-}$	1.636	-5.03	104.3	80.70	371.7	9.93	35.80	281.7	6	60
$\begin{pmatrix} 4 \end{pmatrix}^{+} 5^{-}$	1.520	-4.98	102.0	95.42	308.1	9.28	27.29	238.0	13	140
$\begin{pmatrix} 2 & 5 \end{pmatrix}^+ & 5^-$	1.620	-5.33	85.3	95.11	471.3	10.40	37.00	266.3	6	100
$(C_{3})_{4} + 3^{-}$	1.156			48.28	222.3	5.50	8.10	200.7		
$(4)^{+}3^{-}$	1.346		400	93.33	112.1	8.81	21.70	242.7	>118	
$\begin{pmatrix} 2 & 5 \end{pmatrix}^{+} & 3^{-}$	1.40			93.33	383.4	9.63	27.85	282.2		
٨Đ	1.816		230	37.84	70.03	8.84	35.84	259.8	7.4(7.5)	120(120)
	1.905		277	37.84	75.03	9.16	41.18	258.8	7.4	120
С		. C		15	-				(5 °C	C/ ,
). '	•		,			5		D		3 2
. D		D	•		(). 1		(). 🗚	
C	7.0.									

ASSOCIATED CONTENT

S Supporting Information

AC	D : 10.1021/	.8 05106.	
		;	1-
41;	1- 29 (D)		
-	fi ()		

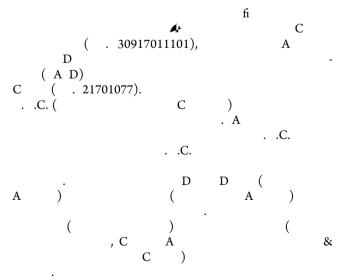
AUTHOR INFORMATION

Corresponding Authors

- * @ . . * 2004@16
- * 2004@163.

ORCID 💿

Chao Jiang: 0000-0002-9228-1924 Jun Luo: 0000-0002-8093-5345 Bingcheng Hu: 0000-0002-0371-8128


Author Contributions

 $^{\perp}C.$. C. .

Notes

fi .

ACKNOWLEDGMENTS

REFERENCES

- (1) , .; D , .A.; , A. I , .C. m. 2017, 56, 10151.
- (2) , . .; , . .; D , . C.; , . .; , . D.; , . . . C_{mm} . 2017, 8, 181.
- (3) ", . .; ', C. . C. m. . . . 2008, 20, 3629.