

$C \bullet t ts lists il l t S i D i t$

Applied Surface Science

A li S f S i

journal homepage: www.elsevier.com/locate/apsusc

CO_2	t	S	tir	•	- 🍙 🧎 t	,1 it	
Li T •,	J	Н	, D 🔸	D st	,TiyW',Ji	Li, it • i ',*, QiW ,*	

School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan 114051, Liaoning, China School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA Harvard SEAS-CUPB Joint Laboratory on Petroleum Science, Harvard University, Cambridge, MA 02138, USA State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing 102249, China School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264000, Shandong, China

ARTICLE INFO

ABSTRACT

It is st y, sity f tie | t e y | | tie s f٩ test yt CO₂ tie e Keywords: t s CO₂ t lits f it - 🍋] t . T s)tsiittt]itsf i t lly fe \$ tie s 10^{13} C 1 it ۴ 1 tie is y st 1 itie s. At t iti J sity ef 18.56× C - • 1 t $^{-}/^{2}$, t y of sil CO₂ o lly lits f se tie ti 1 D sity f tie lt ey -6.23 V. Mr si] $rac{1}{1}$ ss s of CO₂ so the / so the ۴t it e t v v . A se tie v i, t •y i • tis • st t t t CO₂ s • t • sly] it SP t S 🗭 ti | |i tie, | it sity (8.04× 10^{13} ⁻/ ²) e t s f tt t Je 900 K. I 1 • ity se tie ⁻²) t i i (4.95× 10¹⁴ itte-i sie 1 t i ls. I lit si lysl ti fes ti CO₂ fe N₂, H₂ CH₄. I et tly, t itir , fr CO₂ t s tie is t i fr 8.04× 10¹³ tr 18.56× 10¹³ • ti [sity $^{-}/^{-2}$. Ts slts et e ly est t f si ility ef lits || t si | CO₂ ellt∙ y - elt te tise ei itieet li ks it s-se t t i ls.

1. Introduction

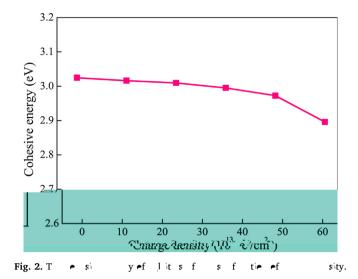
Т s in s 1 ค t] •] s y le 1 i s i fe sef li t el.Tisis • t t ۴ s t i٩ y- ► t ►f t 1 • ss ef fessil f is is CO₂, 1 • $t ef CO_2$ is itt i te t tes 1 i te si ifi ti si 🌬 It t 1,2]. M ų, e i ifi

si]y • t•]] yij ti / t ti t] t• s, t sity li i e it i t is (t is $5.8 \vee 17$) sily i t ils, s it is t ils (t is t ily, if t t e is it ils, s s it e it i , 18] • • • • s ts 19], C₃N • s t 20], M - N-C (M = F, C, C) (M = F, C, C) (M = S t 21], Nt-st 22] • • • s 23], st i y - - -] t to e i te DFT]] ties for CO_2 t s-tie. He , te-i sie] tils et e]y i e tie ests e | f t i est s, t |se - i i sity fe CO₂ t s tie . Tesel tes ells, lit sesi sest-ff ti it tiltet CO₂ y - elt te.Tisis s lit el i ssie te ety t tit t 24–26]. Bsis, litis e eft esttlly st l i ls te its i e esitie t t 13]. EFFIlly, litsless is fly istiti t 27]. T fe, if lit is f si l, it ill et ell t t in t t est of CO₂- so t ill si ifi tly Mee, t - e, l t t e ill stily li i ti, l i e t tet e ility ef le sity il ility ef l t t

I t is st y, t \bullet t is y \bullet t sis, DFT | | t \bullet it issie \bullet tie t \bullet s f \bullet t syst ti ||y st y t se tie \bullet f $CO_2 \bullet$ t | | | it s f . Fist \bullet f ||, t st ility \bullet f | it s f t it | sity \bullet f | it s f f \bullet CO₂ t s \bullet fi . T , se tie \bullet , se tie is , i ti \bullet ss t \bullet y i \bullet tis \bullet f CO₂ - | it i t f st i t \bullet ill st t t f si ility \bullet f \bullet | t | it f \bullet CO₂ t . Fi ||y, CO₂ t ity t s tie f \bullet \bullet f CO₂ t \bullet N₂, H₂ CH₄ is ss i t il, \bullet i t \bullet ti | sity f CO₂ t s tie is t i . T s s |ts \bullet t \bullet |y \bullet i | f s f t \bullet ill t e ti | litits, t | se t t \bullet t t t t | i | s y \bullet t ti | i t i tie i t f | e f CO₂ t s tie .

2. Methods

B s sity f tie | t e y (DFT), D e|³ = 28] s s te | | t || eft se tie ie sef s e| | s (CO₂, N₂, H₂ CH₄) e t (104) s f ef | it, si t (104) s f ef | it is t est st | t e y i || y yst || e i | 29,30]. T - | tie it tie s |t it y t |i i t e i tie (GGA) it t P -B --E ef (PBE) ty 31,32] e | i | sis s t it e| i tie f tie (DNP) s e t . I e te t | y s i i t tie s, is sie - t DFT (DFT-D) t e it t G i W e tie 33] s ||ey i || | | tie s. Gi t i | t e st t - e | t s t , etie e sy B | t | . 34] s s te i f ||y se tie e ss sef s e| | s. Te i i -|ity | | tie s |ts, t |-s ||e | teff is s 4.9 A t B ille i e ss | y 3× 2× 1 - e its si t Me est-P s . B si s, t e te | s 1×10^{-5} H fe t tet | y, 0.002 H /A fe te i fe s 0.005 A fe i is | t, s t | y. Fi ||y, t M ||i t e 35] s es te t i t | t e ist tie t sf is .


3. Results and discussion

3.1. Stability of calcite surface with charge-modulated

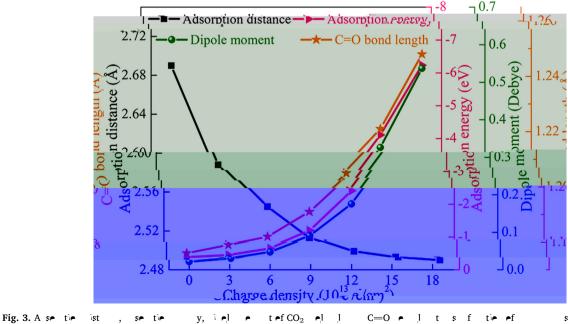
Fist of II, Fi. 1 as o st st t 1 t s of t 1 it

t |l]y. T• st |lisTD(| t)-352.3()Tj95.977

14

3.2. Effect of charge density on adsorption behavior of CO_2 on calcite surface

I t is s tie, fist e fi t iti | sity ef | it s f fe si | CO₂ t y | | | t t se tie ist. N t, | e t t se tie y ef CO₂ t t iti |sity. Fi | | | y, is ss t ff t ef sity e se tie ie ef CO₂.


W t s iti | | , s •| | sity t 19,20,22,39]. Ce s f yfet se tly, t∙ e fi t itil sity y | | ti t tie ist $ef si | CO_2 e$ litsf s f tie sity. B fe 1 ti t iti 1 sity of 1 it f, it is y ssyte fit i it i l se tie e fi the ef CO_2 e lits f CO_2 el lis tilly se t li insite lits fet sis ef in s st is 25,29,37,40], set i iti l se tie e fi tie ef CO_2 e ,1 it sfisisly Fi.1b.W t sity ssf 🗭 0 te 18.56× 10^{13} ⁻/ ², fe t t t ist is se tie f • 2.69 A te 2.49 A (Fi. 3). It • st t CO₂ is les te t litsf s eft t | tes. He , CO_2 el |

• sf yf • t | it sf t s 18.56 × 10¹³ ⁻/² (Fi . S1). T f t ly 🔺 s f sitv 18.56 10^{13} ⁻/ ²(• s • i 1.5 ⁻ i j t t • l it s f) sity of 1 its f for CO_2 t. iti 1 is t y is si ifi tst tr l t t sr t 41]. As s i Fi.3, Ft SP tie tie i t t S $y \bullet f CO_2 s f t \bullet \bullet f$ 1 1 t sity. T SP tie s fi S tie SP v

$$E_{ads} = E_{total} - (E_{calcite} + E_{gas})$$
(3)

Cl ly, ti l f_{1} + s ts s el l t litsf.I tie t l, t tie y **e**ft s 🖻 t 50 t til st • t ly 0.52 V t• s ise tie 42,43]. Fe t 1 y of CO_2 is -0.38 V. s f $(\rho = 0 i F i . 3)$, t se tie t sf f 🗭 Milli el tielysissest te CO₂ el l te lits f. Ts, it est tCO₂ is ysise t l lits f. It stily, t se tie y is tilly is st sity of lits f S S. i -6.23 V tt iti l sity. T Se tie •f CO₂ • t is 18.56× 10^{13} ⁻/ 2 🖻 t 16 ti s f is eft te tisf.Milli lysiss 🗭 st tt e 1 tie t sf f e t lits f tet CO₂ el lis 0.61 A $rac{i}{ly}$, t is i i tst tt ty $rac{f}{CO_2}$ so the $rac{t}{t}$ sfe ysise tie i te it s f ise tie

D tet i el ef C=O e i l ti fi l 4], te st yt ff t∙f sity 🖻 se tie ie ef CO₂, W C=0 • $f = t - f CO_2 - 1$ ltsf tie t i Fi.3,t i 🎮 sity i Fi.3. As s 🗭 ef t ef $CO_2 \rightarrow 1 + t + t \rightarrow 1 + t \rightarrow 1 = 0 \rightarrow s$ s ti <u>l</u>ly st sity - lits f ∬ t SS se tie ist s s. It ίt уt si t st ti] t i fi] t t lit s f te i siijt ļtes.Ft ►,t i ef t SP ttit tet y $\bullet f CO_2 \bullet l l$ tie 1 s eft $f = t ef CO_2 el$ _1 t s ∙ft se tie ist . T f e, t el i tie ef CO_2 el l i v

sity ef ∣its f.

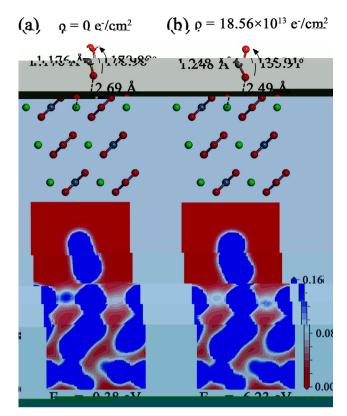


Fig. 4. A set i est t | te sity ist i tie ef $CO_2 e$ () t |s f () | it s f it iti | sity. T sit s it ises f , t ef ise | is s t te 0 te 0.16.

ij ti || te s|| ys si ifi tell it se tie yef CO_2 el ||.

3.3. Adsorption mechanism of a single CO_2 on calcite surface at critical charge density

I t is s time, t t itiple sity of plits f s plit f ply st t so time is . W fist is t t iple st t it plit sity istint of CO_2 plit it f . T , plot i time ss to iple st t siple f CO_2 so time so time. Fiply, plit t or y i or tis to t CO_2 set esly seset lits f.

3.3.1. Detailed structure and electron density distribution of CO_2 -calcite interface

0 (t O-C-O | \$ 178.98; t • • | C=O • \$ 1.176 A), is tilly tes f se t li ie sit.T t t O trefCO₂ t 1 in e 1 it ist s f is 2.69 A, t \bullet ty \bullet ft li CO₂ \bullet l lissi il $CO_2 \bullet 1 1 (t O-C-O 1 is 180; t \bullet 1 C=O$ f te 1.176 A) 20]. F t • .t is el tese 1 S $CO_2 \rightarrow 1$ | t | lits f i t | i t $\rightarrow f$ | t (Fi.4a). T silts fitt CO₂ sity ist i tie **e**] lses ysise tie e tļsf.He sity (18.56× 10¹³ lits fitt itil (Fi. 4b), t li CO_2 el lise is sly iste t t 1 tes. Ce it tes fi tie ef CO_2 ysise tļļitsf,tist t t Ote 1isset fe 2.69 A te 2.49 A; t O-C-O 1 is t 178.98 the 135.91°; t t r r l C = O r s 1 f e t sitv islits f (Fi.4b), st ti CO₂ el lit ts stely it lits f. Si CO₂ is L is i f steiltes i tie 16], elet lteste CO_2 ell, slti litsf t $CO_2 \bullet 1 1$ lits f.T f•, 1 it ise tie it CO₂ el 1 tt itil s f i its st 🖻 sity.

3.3.2. Reversibility of CO_2 adsorption and desorption

Si si ility of CO_2 so the so the is si if t ft i tes l tils, i ti e ss ef CO_2 fe • litsf ijt 🕨 tt SP tie ef CO_2 ysise • ss. Aft s, t lit s f sity of 18.56× 10^{13} ⁻/ ² tt itt tllitsf edv **^** s.It 🛛 st tst t CO_2 el ls et esly ysise ste ise tie

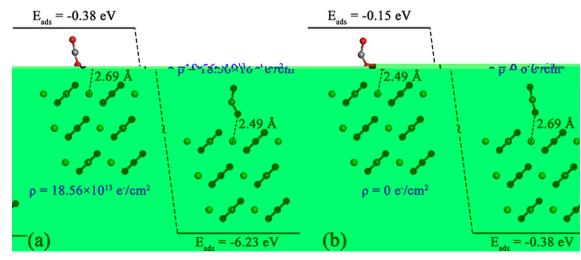


Fig. 5. Ki ti e ss s ef se tie ef $CO_2 e$, lit s f it iti, l sity. () A se tie e ss ef $CO_2 e$, lit s f i j tie. () D se tie e ss ef $CO_2 e$, lit s f i e, l.

t est st | e fi tie ef CO₂ ysise e t | | it s f .O ie sly, t sity ef 18.56 \times 10¹³ ⁻/ ² s e fe | it s f , CO₂ e| | s e t e sly se fe | it s f t sf tet | ly ysise tie e fi tie .F t e , t se tie e ss is | se et i y 0.23 V it e t y y i .H , t CO₂ se tie / se tie e ss se | it s f si | sily e | t i i j ti / t ti t | t e s.

3.3.3. Spontaneity of CO_2 adsorbed on calcite surface with critical charge density

E | ti t ey i e tisis fillte t i t CO₂ se et | its f t iff tt t s.Fet | tieft ey i e tis, te | lt t t ey t lyte tt Gisf y.H , tey sfist | lt y

$$S = S_{trans} + S_{rot} + S_{vib}$$
(4)

$$H = H_{trans} + H_{rot} + H_{vib} + RT$$
(5)

$$G = E(0K) + H - T \cdot S$$
(6)

T till t y l l ties sei S l tyMtil.Ces tly, sitt y f tiesef tey(ΔS , |/|e|/K), t l y(ΔH , |/|e|), Gisf y(ΔG , |/|e|) itt t (K) e l ll t test y t ff teft t eCO₂ se tie e t l its f it sity ef 18.56× 10¹³ -/ ² (Fi.6).As s e i Fi.6, s e t l sef ΔS ΔH , t l sef ΔG i. T ΔG iss li ly it i sitt t, e i t ΔG l is ti til e i t ly 900 K. It it ist t t ise tie ef CO₂ e t l its f it it i, sity ef 18.56× 10¹³ -/ ² e sete sly tt t t le 900 K.

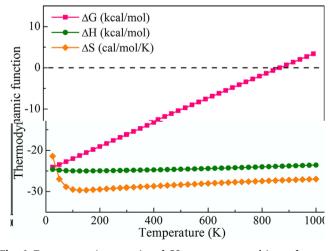


Fig. 6. T r y is r tisef CO₂ so r lits f s f the eft t s.

3.4. Applications of CO_2 capture and separation

3.4.1. CO_2 capture capacity of calcite surface at minimum charge density Fe i - fe CO_2 so t t i |s, CO_2 t ity is si ifi t it i. B fe | ti t CO_2 t ity, fi st, te esi t so the sits of |ti| | CO_2 el | so | lits f . As so i Fi. 7, t s ||ef | it s 4 sits of | i i of CO_2 so the . Not |y, t o iff t so the efi the s($2CO_2$ - $2CO_2$ -) si fe t of CO_2 el | s - so e | it s f (Fi. 7a and 7b).

B si s, the fi if t is seally of CO_2 se te st y it t it 1 sity te s litsf, y.Fretiss, i se tie i t if of t fift CO_2 of 1 of 1 it s f it t sity of 18.56× 10^{13} ⁻/ ² (Fi . 8a). As t Fi . 8b se tie iti] t fist ly is fill, t fift CO₂ •]] ill • sts. se e lits f. It e l st t CO₂ • ly f• 1 e el y e litsf, **-**1 sity. iti 1

Te t st yi $rf CO_2$ t ity, l ► t t is t ef CO₂ el lse se tie it iff t litsf siti s (Fi. 9). As t y of || CO₂ ol |s sity is s, t se tie s. A • i, t • iff t • fi tie s (2CO₂-1 $2CO_2$ -) of CO_2 so plits f initial so the y. W t sity is ost t, t pl t o to e tef e lits f,ts llt se tie y. It is CO₂ se et eti t tt s t t ise tie ef CO_2 ef | it s f e | s i ti | | it ie . G || y, se tie s e 1 t t 0.52 V is e si is e tie 42,43]. As t is 1 ys, t i i sity is 8.04× 10¹³ ⁻/ y Fi.9 is 1 ys, t i i ², f CO_2 | | | s►t litsise . T for , fit st tion CO_2 t lits f s for ison CO_2 of f e ef CO_2 $\begin{array}{c} \mathsf{CO}_2 \\ \bullet & \mathsf{I} \\ \mathsf{I} \\ \mathsf{s} \\ \mathsf{(fe} \\ \mathsf{CO}_2 \\ \mathsf{CO}_2 \\ \mathsf{t} \\ \mathsf{t} \\ \mathsf{s} \\ \mathsf{s} \\ \mathsf{y} \\ \mathsf{t} \\ \mathsf{s} \\ \mathsf{t} \\ \mathsf{s} \\ \mathsf{s} \\ \mathsf{s} \\ \mathsf{t} \\ \mathsf{s} \\ \mathsf{s} \\ \mathsf{s} \\ \mathsf{t} \\ \mathsf{s} \\ \mathsf{s} \\ \mathsf{t} \\ \mathsf{s} \\ \mathsf{s} \\ \mathsf{t} \\ \mathsf{s} \\ \mathsf{s} \\ \mathsf{s} \\ \mathsf{t} \\ \mathsf{s} \\ \mathsf{s} \\ \mathsf{t} \\ \mathsf{s} \\ \mathsf{s} \\ \mathsf{t} \\ \mathsf{s} \\$ 8.04×10^{13} ⁻/ ². C it t • ti] sity ef t -i si |t i| s (T |1), |it s f t |• ts of CO₂ of | is the sity (• $|y| 8.04 \times 10^{13}$ / ²), • • • sly t y • s tie y ro t r tir est of l-⁻/ ²), ¹ i e t se tie ffi i y.I itie,t s eft 1 s s i ist i tie ef 1is y le it.T 🔸 ts esttt lits fis e flse $t f \in CO_2 \quad t$.

3.4.2. Separation performance of CO_2 from calcite surface in gas mixture Si CO₂- se t t i ls eft e i lti- s e- isti in t, t CO_2 s time for is not si if t it in . FI s (CO_2/N_2) is t and the st s 1 tet es ff t 4,44]. T fe, it is ysi ifi t te t CO₂ f e fl s fe iti ti le li.F t e . st est e isi H₂ is r si lt tifl s its • i tie • t(t) is ell tie -f 45].Nt] s s 1 s ($i | y CH_4$) s e tie 1 se tt t tt tie i ss i e t 1 et tie e tie 11 v tet i i ffiiy, t = t + t = 46,47]. He , CO₂ is siliityit fti ess sefH₂ CH₄ 45,48]. Co s tly, CO_2 s o l s CH₄. t f ► H₂ I til litie, tetil sity fe CO₂ 8.04×10^{13} t tie is t i fe t S ís • t lits f (Fi.9). T , 18.56× 10^{13} ⁻/ ² is t iti 1 sity t i $|\mathbf{e} \cdot \mathbf{e}| = t$ ties ($\mathbf{e} \cdot \mathbf{CO}_2 \cdot \mathbf{e} = 1$)

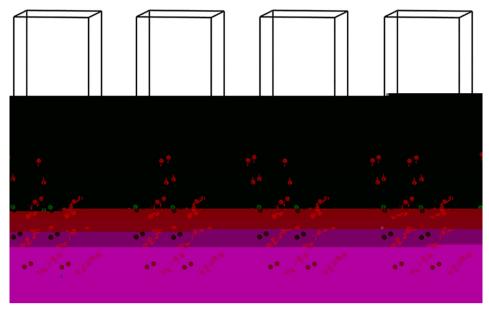


Fig. 7. T i it i se the efficience of the set of the transformation of the set of the s

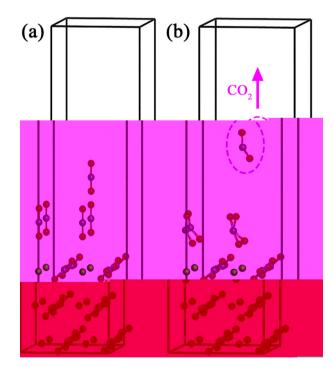


Fig. 8. A set isis effi CO_2 | | set | it sit titi |sity.() Titi | set iseffitie effi| it sf.() Test steffitie effi| it sf.() Test steffitie effiit titi |sity.

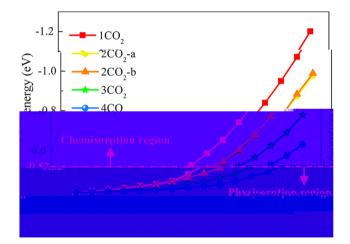


Fig. 9. T t so the $i s \circ f O_2$ it iff t sitis. "" "" s the iff t so the officies (Fi . 7a and 7b), s the ly.

Table 1 Ce ise of CO2- se	fe	∙ fst	ie	s s lts.
Ase t t ils	C _/ ²)	sity (10 ¹³	t -2)	ity (10 ¹⁴
G iti 🔺 iti 18]	61.70		7.39	
Bee es t 19]	52.50		6.73	
N-• t- s t 22]	40.90		2.45	
C ₃ N ►s t 20]	22.00		2.13	
Calcite (this study)	8.04		4.95	

is of sity, tit is still it stt of ysisse tie (Fi.S3). He , e it N_2 , H_2 CH₄, CO₂ is stelly se plits f it etill sity . It i thy i tst tt lits f ses is litity for CO₂ s t fe it sof N_2 , H_2 CH₄.

4. Conclusions

Is y, DFT it is sime time to	• S	s te
------------------------------	-----	------

i stit se tie e tis ef CO_2 e t l 1its f.T.s.]tssett - e.]t.]itis it lly f si l t sity s littl ff t r t st ility ef lits f. I itie, se tie y ef si $| CO_2$ is sti lly tt iti | sity ef 18.56 \times 10¹³ $^-/$ ², i -6.23 V. T is is s CO₂ is L is i f s te il tes i setie, silti i e t CO₂ el l lits f.U itil sity, si] $rac{1}{1}$ s s s of CO_2 so the / so the et î it et y y i, t ey i et s e t t $CO_2 s$ et e sly se s e t lits f t t t - t le 900 K. Ce it t e til sity ef t -- i sim | t | s f CO_2 t , | it s f sily i CO_2 t ity t 4.95× 10^{14} ⁻² t i sity f 8.04× 10^{13} ^{-/ 2}. M i] , | it sily s |y s | t f s t CO_2 f s N_2 , H_2 CH_4 . s f fe,tes,ltss stttt lits fill т si ifi t li tir si tly t rest i t sti fr CO_2 tie is fi f = 8.04× 10^{13} te 18.56× 10^{13} -/ 2 S

CRediT authorship contribution statement

Lin Tao: Ce t li tie, M t e ele y, Fe l lysis, W iti - e i i , l ft. Junchen Huang: Fe , l Jysis, W iti - i & iti . Davoud Dastan: Fe , l Jysis, W iti - i & iti . Tianyu Wang: W iti - i & iti . Jing Li: R se s, Vis , li tie . Xitao Yin: Ce t , li tie , S isie , R se s. Qi Wang: M t e ele y, W iti - i & iti , Seft , R se s.

Declaration of Competing Interest

• • • ti fi i] T tes lttty it sts e se l l ties ist tel t∙ifle etitis. t

Acknowledgements

T f i fet N tie | N t | S i Fe tie efC i (G t Ne. 51634004, 51874169 51974157) is t f lly -• 1 .

References

- 197.

- S i. 4 (2011) 4528.
- W, Q., J. Li, J., C. e, E le tie ef e e e s s fe t s tie ef N₂ f e CO₂: [ti-s] e t tie] st y, P ys. C . C . P ys. 18 (2016) 8352–8358. 8] . W , Q. , J. Li, J.
- 10] N. M. [e, S. D.], D.-E. Ji. , Q. t
 1
 sis field it

 s. JI. ses e. e. J. s, J. P. ys. C
 . A 118 (2014) 1150–1154.
 i j sisfe i ti i t sef
- "el l t ee" is i it elits, J.A.C. Se.134 (2012) 19246–19253.

- R . S sti. E y R . 53 (2016) 536-546.
 [14] J. Bl y, E. A tey, J. W . P. F [], T [] iee i y] fe] -s] CO₂ t , Pe . E y Ce st. S i. 36 (2010) 260-279.
 [15] S. W , S. , M, J. Ge , R t si t ef e iei si] [] ie t] -s e i s, E y E ie. S i. 4 (2011) 3805-3819.
 [16] Q. S , . Li, D.J. S] s, . C , G. L , A. D , C e te]] s it] CO₂ t e e it] e t i]s, J. A . C . Se . 135 (2013) 8246-8253.

- 171

- . 8456–8459

- ry r s (r) r, r) r, t (t; tr) (st) r, J, P ys, C.
 B 102 (1998) 2914-2922.
 37] G, C. (i), I, H, ss (r), M, J, Al-M (r), R, S. (r), M. M (r), S, A. (r), A. t (r), I, H, ss (r), S, S, t (r), e. (r), f (

si] tie ef -] s CO_2 e fi y] it e e s, E y F]s 32 (2018) 1934–1941.] -s st . ()-5-/T S fT 7. (-.7(t6 621640.4 2.2 (00 fT -3